skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lah, James"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Alzheimer’s disease (AD) presents significant challenges in clinical practice due to its heterogeneous manifestation and variable progression rates. This work develops a comprehensive anatomical staging framework to predict progression from mild cognitive impairment (MCI) to AD. Using the ADNI database, the scalable Subtype and Stage Inference (s-SuStaIn) model was applied to 118 neuroanatomical features from cognitively normal (n = 504) and AD (n = 346) participants. The framework was validated on 808 MCI participants through associations with clinical progression, CSF and FDG-PET biomarkers, and neuropsychiatric measures, while adjusting for common confounders (age, gender, education, and APOE ε4 alleles). The framework demonstrated superior prognostic accuracy compared to traditional risk assessment (C-index = 0.73 vs. 0.62). Four distinct disease subtypes showed differential progression rates, biomarker profiles (FDG-PET and CSF Aβ42), and cognitive trajectories: Subtype 1, subcortical-first pattern; Subtype 2, executive–cortical pattern; Subtype 3, disconnection pattern; and Subtype 4, frontal–executive pattern. Stage-dependent changes revealed systematic deterioration across diverse cognitive domains, particularly in learning acquisition, visuospatial processing, and functional abilities. This data-driven approach captures clinically meaningful disease heterogeneity and improves prognostication in MCI, potentially enabling more personalized therapeutic strategies and clinical trial design. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. Alzheimer’s disease has a prolonged asymptomatic phase during which pathological changes accumulate before clinical symptoms emerge. This study aimed to stratify the risk of clinical disease to inform future disease-modifying treatments. Cerebrospinal fluid analysis from participants in the Emory Healthy Brain Study was used to classify individuals based on amyloid beta 42 (Aβ42), total tau (tTau) and phosphorylated tau (pTau) levels. Cognitively normal (CN), biomarker-positive (CN)/BM+individuals were identified using a tTau: Aβ42 ratio > 0.24, determined by Gaussian mixture models. CN/BM+ individuals (n = 134) were classified as having asymptomatic Alzheimer’s disease (AsymAD), while CN, biomarker-negative (CN/BM−) individuals served as controls (n = 134). Cognitively symptomatic, biomarker-positive individuals with an Alzheimer’s disease diagnosis confirmed by the Emory Cognitive Neurology Clinic were labelled as Alzheimer’s disease (n = 134). Study groups were matched for age, sex, race and education. Cerebrospinal fluid samples from these matched Emory Healthy Brain Study groups were analysed using targeted proteomics via selected reaction monitoring mass spectrometry. The targeted cerebrospinal fluid panel included 75 peptides from 58 unique proteins. Machine learning approaches identified a subset of eight peptides (ADQDTIR, AQALEQAK, ELQAAQAR, EPVAGDAVPGPK, IASNTQSR, LGADMEDVCGR, VVSSIEQK, YDNSLK) that distinguished between CN/BM− and symptomatic Alzheimer’s disease samples with a binary classifier area under the curve performance of 0.98. Using these eight peptides, Emory Healthy Brain Study AsymAD cases were further stratified into ‘Control-like’ and ‘Alzheimer’s disease-like’ subgroups, representing varying levels of risk for developing clinical disease. The eight peptides were evaluated in an independent dataset from the Alzheimer’s Disease Neuroimaging Initiative, effectively distinguishing CN/BM− from symptomatic Alzheimer’s disease cases (area under the curve = 0.89) and stratifying AsymAD individuals into control-like and Alzheimer’s disease-like subgroups (area under the curve = 0.89). In the absence of matched longitudinal data, an established cross-sectional event-based disease progression model was employed to assess the generalizability of these peptides for risk stratification. In summary, results from two independent modelling methods and datasets demonstrate that the identified eight peptides effectively stratify the risk of progression from asymptomatic to symptomatic Alzheimer’s disease. 
    more » « less
  3. Background: The complex and not yet fully understood etiology of Alzheimer’s disease (AD) shows important proteopathic signs which are unlikely to be linked to a single protein. However, protein subsets from deep proteomic datasets can be useful in stratifying patient risk, identifying stage dependent disease markers, and suggesting possible disease mechanisms. Objective: The objective was to identify protein subsets that best classify subjects into control, asymptomatic Alzheimer’s disease (AsymAD), and AD. Methods: Data comprised 6 cohorts; 620 subjects; 3,334 proteins. Brain tissue-derived predictive protein subsets for classifying AD, AsymAD, or control were identified and validated with label-free quantification and machine learning. Results: A 29-protein subset accurately classified AD (AUC = 0.94). However, an 88-protein subset best predicted AsymAD (AUC = 0.92) or Control (AUC = 0.92) from AD (AUC = 0.98). AD versus Control: APP, DHX15, NRXN1, PBXIP1, RABEP1, STOM, and VGF. AD versus AsymAD: ALDH1A1, BDH2, C4A, FABP7, GABBR2, GNAI3, PBXIP1, and PRKAR1B. AsymAD versus Control: APP, C4A, DMXL1, EXOC2, PITPNB, RABEP1, and VGF. Additional predictors: DNAJA3, PTBP2, SLC30A9, VAT1L, CROCC, PNP, SNCB, ENPP6, HAPLN2, PSMD4, and CMAS. Conclusion: Biomarkers were dynamically separable across disease stages. Predictive proteins were significantly enriched to sugar metabolism. 
    more » « less
  4. null (Ed.)
  5. Brain age (BA), distinct from chronological age (CA), can be estimated from MRIs to evaluate neuroanatomic aging in cognitively normal (CN) individuals. BA, however, is a cross-sectional measure that summarizes cumulative neuroanatomic aging since birth. Thus, it conveys poorly recent or contemporaneous aging trends, which can be better quantified by the (temporal) pace P of brain aging. Many approaches to map P, however, rely on quantifying DNA methylation in whole-blood cells, which the blood–brain barrier separates from neural brain cells. We introduce a three-dimensional convolutional neural network (3D-CNN) to estimate P noninvasively from longitudinal MRI. Our longitudinal model (LM) is trained on MRIs from 2,055 CN adults, validated in 1,304 CN adults, and further applied to an independent cohort of 104 CN adults and 140 patients with Alzheimer’s disease (AD). In its test set, the LM computes P with a mean absolute error (MAE) of 0.16 y (7% mean error). This significantly outperforms the most accurate cross-sectional model, whose MAE of 1.85 y has 83% error. By synergizing the LM with an interpretable CNN saliency approach, we map anatomic variations in regional brain aging rates that differ according to sex, decade of life, and neurocognitive status. LM estimates of P are significantly associated with changes in cognitive functioning across domains. This underscores the LM’s ability to estimate P in a way that captures the relationship between neuroanatomic and neurocognitive aging. This research complements existing strategies for AD risk assessment that estimate individuals’ rates of adverse cognitive change with age. 
    more » « less
    Free, publicly-accessible full text available March 11, 2026
  6. The gap between chronological age (CA) and biological brain age, as estimated from magnetic resonance images (MRIs), reflects how individual patterns of neuroanatomic aging deviate from their typical trajectories. MRI-derived brain age (BA) estimates are often obtained using deep learning models that may perform relatively poorly on new data or that lack neuroanatomic interpretability. This study introduces a convolutional neural network (CNN) to estimate BA after training on the MRIs of 4,681 cognitively normal (CN) participants and testing on 1,170 CN participants from an independent sample. BA estimation errors are notably lower than those of previous studies. At both individual and cohort levels, the CNN provides detailed anatomic maps of brain aging patterns that reveal sex dimorphisms and neurocognitive trajectories in adults with mild cognitive impairment (MCI, N  = 351) and Alzheimer’s disease (AD, N  = 359). In individuals with MCI (54% of whom were diagnosed with dementia within 10.9 y from MRI acquisition), BA is significantly better than CA in capturing dementia symptom severity, functional disability, and executive function. Profiles of sex dimorphism and lateralization in brain aging also map onto patterns of neuroanatomic change that reflect cognitive decline. Significant associations between BA and neurocognitive measures suggest that the proposed framework can map, systematically, the relationship between aging-related neuroanatomy changes in CN individuals and in participants with MCI or AD. Early identification of such neuroanatomy changes can help to screen individuals according to their AD risk. 
    more » « less